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MIT INTEGRATED GLOBAL SYSTEM MODEL
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Table 1. Regions, Sectors, and Primary Factors in the EPPA Model

Country or Region Sectors Factors

Developed Non-Energy Clapital

Tlnited States (LTSA)
Canada (CAM)

Japan (TP
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Anstralia’T™ . Zealand (AN
Former Sowviet Union (FS1T)
Eastern Europe (EET)
Developing

India (NI

China (CHIN

Indonesia {(IDE)

Higher Inc. East Asia {AST)
Mezxico (MEXD

Centr. & 5. America (LAN)
Mhiddle East (MWMES)

Africa (AFE)

Rest of World (RO

Services (SERW)
Energy-Intensive (EINT)

Other Industries (OTHER)
Commercial Transp. (TE. AN
Household Transp. (HTEREIN)
Oifrer HH Consumpiion - Recreatfion
Hunting and Fishing (REHTF)
Wildlife Viewing in Reserves (REWWV_R)
Oiher Wildlife Viewing (REW™W_IN)
Fuels

Coal (COALY

Crude Oal (OIL)

Eefined Ol (ROILY

IWatural Gas (GAS)

1l from Shale (SYINOY

Synthetic Gas (SYING)

Liguids from Biomass (B-OIL)
Elecrricity Gerneraiion

Fossil (ELEC)

Hydro (HY DE)

MNuclear (INTTCL)

Solar and Wind {SOLW)

Biomass (BTOM)

Coal with CCS (IGCAP)

Aodv. gas without CCS (INGCC)

Gas with CCS (INGCAP)
Agriculrure

Crops {(CE.OP)

Livestock (LIVE)

Forest products (FOEBES)

Food Processing (FCOTY)

Labor

Energy Resonurces
Crude (Ol
MWataral Gas
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Hyvdro
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Larredd
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Watuaral Grassland
Other




Expanded SAM—Household
“production” sector, leisure

INTERMEDIATE Household
USE FINAL USE

by Production Services
Sectors Private Gowv't

Labor-
Leisure
Choice | consum. | consum. | Invest.

Domestic

Production

Environr

Bioelec al he_a!
Crops provisi

Livestock
forestry recreati

n
1
2

Biofhels

n Ll
Leisure Leisure | Leisure man ag ed

Value . recreation
added: -labor Labor Labor
ure value

Land fof crops,
product|vi

- nat -
,e::uﬁggq-—'s environmental

INPUT | J

-capital G

Added components are in bold italic.




atmospheric carbon dioxide

gross
primary respiration decomposition
production

litterfall
production

Vegetation

T W W O e Y W e E oy i T e e
M S A NSNS -

© L litterfall >

! production |
'

net exchange/
mineralization

Terrestrial Ecosystem Model (TEM)

The Ecosystems Center, Marine Biological Laboratory (Woods Hole, Massachusetts)

Figure 3.4: Description of the Terrestrial Ecosystem Model (TEM)
Source: The Ecosystems Center, the U.S. Marine Biological Laboratory (MBL).
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Food, crop, livestock, and forestry price impacts combine impacts of climate
change, ozone, competition for land of biofuels, and mitigation cost effects on
energy/N,O/CH,
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FRAMEWORK FOR AIR POLLUTION IMPACTS ANALYSIS
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GLOBAL COSTS OF OZONE POLLUTION IN 2050

b) AMortalities: Emissions (Total: 817,000)

O, from A1B
scenario [Wu et al.,
2008] to 2050

Calculate change |
welfare due to
health impacts of
ozone changes,
separately for
emissions and
climate drivers

| S esses—— | | S eese——— |
-200  -100 0 100 200 people -200  -100 0 100 200 people

¢) AMortalities: Climate+Emissions (Total: 812,000) d) AMortalities: O; >10 ppb (Total: 2.6x10°)

[ e |
100 200 people -1000  -500 0 500 1000 people

2050 welfare loss from O, health impacts, climate only scenario:
€790 million (year 2000 €)

2050 welfare loss from climate+emission changes: €120 bi!a' :
2050 welfare loss from all OTQ) above background: €580 bil g

[Selin et al., in prep]




Uncertainty: Due to uncertainty in dose response
relationships and economic modeling of impacts.
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Uncertainty Analysis: Methodology

Estimate probability distributions for input parameters controlling the
emissions and climate projections in IGSM sub-models:

(1) Emissions Uncertainties:
Elasticities of Substitution
GDP Growth (based on Labor Productivity Growth)
Autonomous Energy Efficiency Improvement (AEEI)
Fossil Fuel Resource Availability, Population Growth
Urban Pollutant Trends, Future Energy Technologies
Non-CO, Greenhouse Gas Trends, Capital Vintaging
(2) Climate SystemzResponse Uncertainties (constrained by observations):
Climate Sensitivity
Rate of Heat uptake by Deep Ocean
Radiative Forcing Strength of Aerosols
(3) Greenhouse Gas Cycle Uncertainties:
CO, Fertilization Effect on Ecosystem Sink
Ifate of Carbon Uptake by Deep-Ocean
Trends in Rainfall Frequency on natural CH, & N,O emissions

Five Cases indicated by GHG levels (ppm-equivalent CO

2 ppm CO, and
change in Radiative Forcing relative to ~1990 (W/m<) in ~21 06:
No Policy (1400 ppm CO.,-eq; 870 ppm CO,; 9.7 W/m?2)

Level 4 (900 ppm CO, eq; 710 ppm CO,; 7.1 W/m?)

Level 3 (790 ppm CO,-eq; 640 ppm CO,; 6.3 W/m?2)

Level 2 (660 ppm CO,-eq; 560 ppm CO,; 5.3 W/m?)

Level 1 (550 ppm CO,-eq; 480 ppm CO,; 4.2 W/m?)

Generate 400 member ensembles (Monte Carlo with Latin Hypercube
Sampling) for each case




95% PROBABILITY BOUNDS
OF GLOBAL AVERAGE GHG
MOLE FRACTIONS AND
RADIATIVE FORCING from
1981-2000 to 2090-2100,
WITHOUT (1400 ppm-eq
CO,) & WITH A 660, 790
or 900 ppm-eq CO, GHG
STABILIZATION POLICY?
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Cumulative PROBABILITY OF GLOBAL AVERAGE SURFACE AIR WARMING
from 1981-2000 to 2091-2100, WITHOUT (1400 ppm-eq CO,) & WITH A 550,

790 or 900 ppm-equivalent CO, GHG STABILIZATION POLICY
(Ref: Sokolov et al, Journal of Climate, 2009)

AT > 2°C AT > 4°C AT > 6°C

(*Values relative to
1860/pre-industrial)

No Policy at 1400 100%(*100%) 85% 25%

Stabilize at 900 (L4) | 100%(*100%) 25% 0.25%

97%(100%) <0.25%

Stabilize at 660 (L2) | 80%(*97%) < 0.25%

Stabilize at 550 (L1)| 25%(*80%) < 0.25% <0.25%3
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Comparison to IPCC
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Difference Between 1981-2000 and 2091-2100
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Global mean temperature change (from 1981-2000 to 2091-2100); IPCC SRES scenarios
(Meehl et al. 2007). Grey bars for IPCC results indicate 66% and 90% probability), and soli
black line indicates the 5-95% range of AOGCM results (only provided for B1, A1B, and A2) M
This analysis shown as box plots, where box indicates the 50% range, median, outer
whiskers indicate the 5-95% range, dots individual outliers beyond the 95% bounds.




Change in the probability of exceeding illustrative targets for global mean
surface temperature change, as measured by the change between the
average for 1981-2000 and the average for 2091-2100.
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